Natural Language Processing and Standardized Terminologies

Rui Zhang, MS

Institute for Health Informatics, University of Minnesota, Twin Cities

Genevieve B Melton, MD, MA, FACS, FASCRS Department of Surgery & Institute for Health Informatics University of Minnesota, Twin Cities

Natural Language Processing (NLP)

- Techniques to automatically analyze natural language (free text written by people)
- MRI revealed a lacunar infarction in the internal capsule.

Parsing, Named entity recognition (NER), etc.

MRI revealed a lacunar infarction in the internal capsule.

Mapping, Acronym detection, Relationship extraction, etc.

Subject	Predicate (Indicator)	Object
Magnetic Resonance Imaging (MRI)	DIAGNOSES	Infarction, Lacunar
Internal Capsule	LOCATION_OF	Infarction, Lacunar

NLP in Health Sciences

Health care providers, clinical researchers

Clinical NLP and Standardized Terminologies

- Linguistic and medical knowledge are necessary to implement clinical NLP tasks
- Linguistic knowledge provides
 - Lexical information
 - Syntactic structure
- Medical knowledge provides
 - Standardized terminologies
 - Semantic network

Unified Medical Language System® (UMLS®)

Metathesaurus

- Over 1 million biomedical concepts
- 100 vocabularies (SNOMED CT, MeSH, RxNorm, LOINC, Omaha System, etc.)

Semantic Network

- 133 semantic types
- 54 relationships between types

SPECIALIST Lexicon & Lexicon Tools

- Over 200,000 terms
- Syntactic, morphological, orthographic information
- LVG, Norm, Wordind

http://www.nlm.nih.gov/research/umls/new_users/online_learning/OVR_001.htm

UMLS-Metathesaurus

Diagnosis: Logic Observation Identifier Names and Codes (LOINC)

Procedures & Supplies: Current Procedural Terminology (CPT)

Diseases: International Classification of Diseases and Related Health Problems (ICD-10)

Comprehensive: Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT)

MetaMap

Map biomedical text to the UMLS Metathesaurus

Phrase: "obstructive sleep apnea"

Meta Candidates

1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or Syndrome]

901 Apnea, Sleep (Sleep Apnea Syndromes) [Disease or Syndrome]

827 Apnea [Pathologic Function]

827 Sleep [Organism Function]

827 Obstructive (Obstructed) [Functional Concept]

827 Apnea (Apnea Adverse Event) [Finding]

793 E Sleeping (Asleep) [Finding]

755 E Sleepy (Drowsiness) [Finding]

727 E Sleeplessness [Sign or Symptom]

Meta Mapping (1000):

1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or Syndrome]

Aronson AR, Lang FM. J Am Med Inform Assoc 2010;17(3):229-236

Chaining NLP tasks: pipelines

- Any practical NLP task must perform sub-tasks (low-level tasks must execute sequentially)
- Pipelined system enables applications to be decomposed into components
- Each component does the actual work of analyzing the unstructured information
- Unstructured information management architecture (UIMA)

An Example

IN: preposition

An example of a sentence discovered by the sentence boundary detector: Fx of obesity but no fx of coronary artery diseases.

Tokenizer output – 11 tokens found:

Fx of obesity but no fx of coronary artery diseases .

Normalizer output:

Fx of obesity but no fx of coronary artery <u>disease</u> .

NN: noun

JJ: adjective

Part-of-speech tagger output:

Fx of obesity but no fx of coronary artery diseases . CC: coordinating conjunction NN IN NN CC DT NN IN JJ NN NNS . DT: determiner NNS: plural noun

Shallow parser output:

Fx of obesity but no fx of coronary artery diseases . NP: noun phrase

NP PP \(NP \subseteq \text{NP } \subseteq \text{PP} \) preposition phrase

Named Entity Recognition – 5 Named Entities found:

Fx of obesity but no fx of coronary artery diseases.

obesity (type=diseases/disorders, UMLS CUI=C0028754, SNOMED-CT codes=308124008 and 5476005)

coronary artery diseases (type=diseases/disorders, CUI=C0010054, SNOMED-CT=8957000)

coronary artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)

artery (type=anatomy, CUI(s) and SNOMED-CT codes assigned)

diseases (type=diseases/disorders, CUI = C0010054)

Status and Negation attributes assigned to Named Entities:

Fx of obesity but no fx of coronary artery diseases .

obesity (status = family_history_of; negation = not_negated)

coronary artery diseases (status = family_history_of, negation = is_negated)

Savova GK et al. J Am Med Inform Assoc 2010;17(5):507-513

Output Example: Drug Object

"Tamoxifen 20 mg po once daily started on March 1, 2005."

- ♦ Drug
 - Text: Tamoxifen
 - Associated code: C0351245
 - Strength: 20 mg
 - Start date: March 1, 2005
 - End date: null
 - Frequency: 1.0
 - Frequency unit: daily
 - Duration: null
 - Route: Enteral Oral po: per oral/ by mouth
 - Form: null
 - Status: current
 - Change Status: no change

NLP of Nursing Narratives

- To compare the semantic categories of MedLEE and ISO reference terminology models for nursing diagnoses and actions
- In aspects of site or location, MedLEE was more granular than ISO models
- In clinical procedure, two ISO components (action and target) mapped to one MedLEE semantic category
- The ISO models requires additional specification of selected semantic categories
- Analysis also suggested areas for extension of MedLEE

Analysis of Free Text to Inform Terminology Development

- Analyze text associated with "other" targets within Omaha system interventions
- To understand the clinicians' information needs
- To identify additional suggested and new targets
- In particular, new targets were suggested for:
 - Daily living
 - Disease pathophysiology
 - Pain management

Summary

- Linguistic and medical knowledge are needed to implement clinical NLP tasks
- UMLS provides useful standardized terminologies for clinical NLP applications
- UIMA provides pipelined framework to analyze clinical texts
- Analysis of NLP systems and free texts can inform the development of terminologies

